

AVANSECAL I

EXTRACTION OF ANTIOXIDANT NON-EXTRACTABLE POLYPHENOLS FROM MANGOSTEEN PEEL USING GREEN SOLVENTS

Merichel Plaza^{1,2*}, Gloria Domínguez-Rodríguez¹, Cristina Sahelices¹, María Luisa Marina^{1,2}

¹ Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain ² Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain merichel.plaza@uah.es

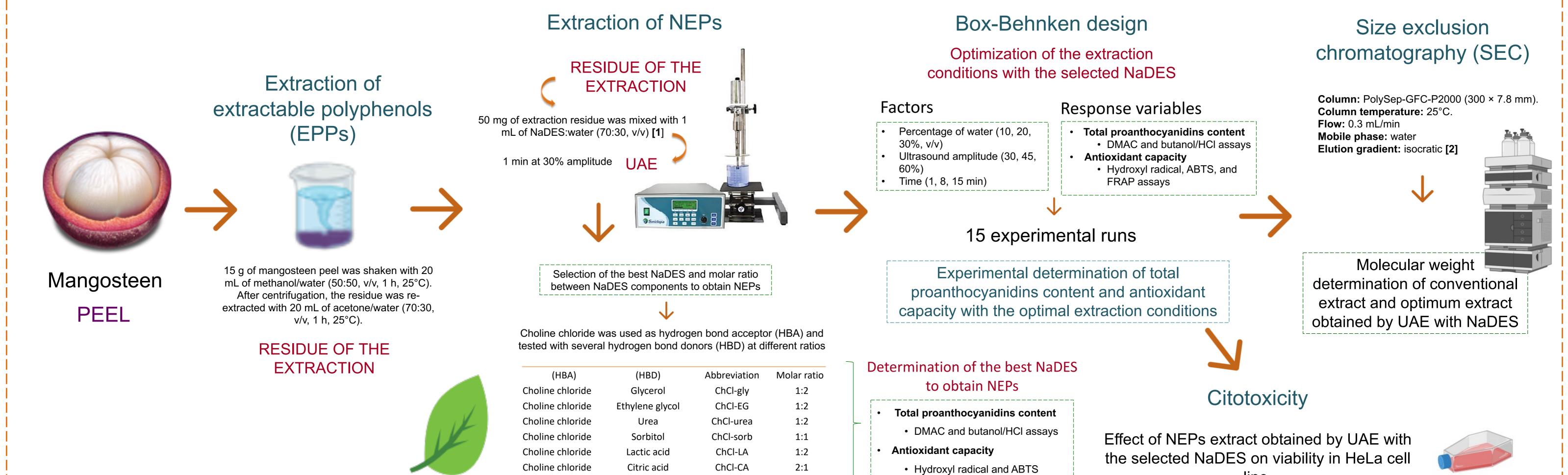
Introduction

Mangosteen (Garcinia mangostana L.) peel byproduct contains phenolic compounds with beneficial health effects.

Mainly, phenolic compounds are extracted by conventional extraction techniques. However, these techniques do not have the capacity to release phenolic compounds strongly attached to the matrix's cell wall, which are called non-extractable polyphenols (NEPs).

New sustainable solvents known as natural deep eutectic solvents (NaDES) have emerged increasing the extraction yields and protecting the degradation of bioactive compounds.

NaDES are environmentally friendly, easily synthesized, biodegradable, non-volatile, highly stable, and have a low cost.

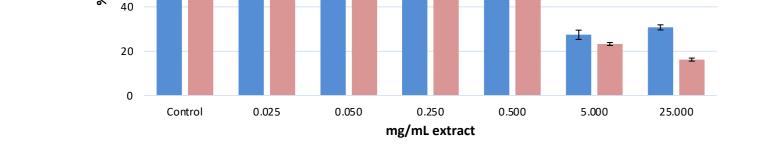

To develop a sustainable analytical methodology for the recovery of antioxidant NEPs from Garcinia mangostana L.

peels based on the combination of NaDES with ultrasound-assisted extraction (UAE) technology.

To optimize the extraction conditions (extraction time, percentage of water on the NaDES, and ultrasound amplitude) to \bigcirc obtain extracts with the high content of antioxidant NEPs, using the Box-Behnken experimental design.

Materials and Methods

VE	Choline chloride	Urea	ChCl-urea	1:2		
	Choline chloride	Sorbitol	ChCl-sorb	1:1	 DMAC and butanol/HCI assays 	F
	Choline chloride	Lactic acid	ChCl-LA	1:2	Antioxidant capacity	th
	Choline chloride	Citric acid	ChCl-CA	2:1	 Hydroxyl radical and ABTS 	LI I
	Choline chloride	Formic acid	ChCl-FA	1:2		


line.

* * * * * *

Results

Determination of the best NaDES to obtain NEPs						Selection of molar ratio between HBA and HBD for the best NaDES					d HBD for	Box-Behnken design with the NaDES ChCl:LA with a molar ratio between components of 1:2			
Table 1 . Total proanthocyanidin content and total antioxidant capacity, obtained from the extraction residue of mangosteen peel by UAE with the different NaDES. ^{<i>a,b,c,d,e,f,g</i>} <i>Letters show the significant differences among the NEPs extraction with different NaDES</i> ($p \le 0.05$).						the extra ^{a,b,c,d,e} Lei	iction re tters sho	esidue of mango	content and total a steen peel by UAE at differences amo	with the different		Optimal extraction conditions → Water percentage UAE amplitude Extraction time 18.8% 60.0% 15.0% : : : :			
NaDES	DMAC (mg epicatechin/100 g sample)	epicatechin/100	Hydroxyl radical (% of hydroxyl radical inhibition)	% scavenging of ABTS radicals	\rightarrow	NaDE	ES e	DMAC (mg epicatechin/100 g sample)	lma		l % scavenging of ABTS radicals	A) (i)			
hCl:FA	18 ± 1 ^b	1767 ± 197 ^{b,c}	71 ± 17 ^a	41 ± 2 ^d		ChCl:LA						$\begin{array}{c} 3 \\ 14 \\ 18 \\ 22 \\ 26 \\ 35 \\ 0 \\ 10 \\ 14 \\ 18 \\ 22 \\ 26 \\ 35 \\ 0 \\ 10 \\ 14 \\ 18 \\ 22 \\ 26 \\ 30 \\ 30 \\ 35 \\ 0 \\ 0 \\ 10 \\ 14 \\ 18 \\ 22 \\ 26 \\ 30 \\ 30 \\ 35 \\ 0 \\ 0 \\ 0 \\ 10 \\ 14 \\ 18 \\ 22 \\ 26 \\ 30 \\ 30 \\ 35 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $			
nCl:LA	25.4 ± 0.6^{a}	2447 ± 237 ^a	23 ± 5 ^d	34 ± 2 ^e			1:1	13.7 ± 0.5 ^d	1230 ± 182 ^b	33 ± 5	13.9 ± 0.8^{d}	Porcentage of water (%) Porcentage of water (%)			
nCl:sorb	5 ± 1^{f}	759 ± 52 ^d	58 ± 10^{b}	49 ± 5 ^c			1:2	25.4 ± 0.6 ^a	2447 ± 237 ^a	24 ± 5 ^{a,b}	34 ± 2 ^c	C) ABTS scavenging capacity D) Hydroxyl radical F) 0			
CI:EG	9.2 ± 0.9^{e}	623 ± 110 ^e	39 ± 8 ^c	65 ± 4ª		ChCl:EG	1:3	18.7 ± 0.6 ^b	2277 ± 386 ^a	24 ± 4 ^b	15 ± 1 ^d	$\binom{96}{20}$ $\binom{96}{10}$ 96			
CI:CA	15 ± 2 ^d	1493 ± 72 ^c		25 ± 2 ^g								$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
nCl:urea		415 ± 57 ^e	9 ± 4 ^e	61 ± 2 ^b			1:2	9.2 ± 0.9 ^e	623 ± 110 ^c	39 ± 8^{a}	65 ± 4^{a}				
Cl:gly	16.5 ± 0.5 ^c	1954 ± 184 ^b	10 ± 4 ^e	30 ± 6 ^f			1:3	16.9 ± 0.5 ^c	2187 ± 436 ^a	31 ± 3 ^a	39 ± 1 ^b				
	С	itotoxicity					S	Size exclusi	ion chroma	tography		0 50 50 0 44 50 10 14 18 22 26 30 3			
		-						of the o	optimal ext	racts		Figure 1. 3-D contour plots showing the effect of the extraction time (min), the ultrasound amplitude (%), and the percentage of water (%) in the NaDES on the total PA content (DMAC and butanol/HCI assays) and total antioxidant capacity (ABTS scanvenging capacity, capacity to inhibit the formation of hydroxyl			
Extract + NaDES (ChICL:LA, 1:2) NaDES (ChICI:LA, 1:2)				mAU	>8000		•	<2000 Da		radical, and FRAP assays) in the extracts.					
100		IIIII			•	60 50						Table 3. Theoretical and experimental values of total proanthocyanidin content and total antioxidant capacity obtained under the optimal UAE conditions, as well as the results displayed of the extraction of EPPs by a conventional extraction method. ^{<i>a,b</i>} Letters show significant differences between UAE with NaDES and conventional extraction.			
ll viab				+		40					-	Response variables Theoretical values Experimental values Conventional extraction			
دو دو						30						DMAC (mg epicatechin/100 g sample) 219.95 $238 \pm 21^{\circ}$ 2.4 ± 0.2 ^b			

	Butanol/HCl (mg epicatechin/100 g
Λ	sample)
	Scavenging capacity of ABTS radical (%)
	Hydroxyl radical (% of hydroxyl radical
	inhibition)
	FRAP (mg GSH/ g sample)

102200 37638 ± 6389 1017 ± 57^c 105.57 113 ± 10^{a} 14 ± 1° 66 ± 9^{a} 5.0 ± 0.4^{b} 61.14 153.28 283 ± 17^{a} 1.58 ± 0.08

Conclusions

O Choline chloride: lactic acid with a molar ratio of 1:2 was the NaDES selected as the best extraction solvent to release antioxidant NEPs from mangosteen peel.

Box-Behnken experimental design showed that ultrasound amplitude and extraction of antioxidant NEPs from mangosteen peel while the percentage of water presented a negative effect.

UAE with NaDES is an efficient, nontoxic and sustainable alternative to recover NEPs from mangosteen peles.

[1] Taha, F.S., Wadgy, S.M., Singer, F.A. (2012). Comparison between antioxidant activities of phenolic extracts from different parts of peanut, Life Sciences Journal, 99, 207-215. References [2] Domínguez-Rodríguez, G., Marina, M.L., Plaza, M. (2021). Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Food Chemistry. 339, 128086.

Authors thank the Comunidad of Madrid (Spain) and European funding from FSE and FEDER Programs (research project S2018/BAA-4393, AVANSECAL-II-CM) and the Comunidad of Madrid and the University of Alcalá (research project CM/JIN/2019-033, SOSBIO) for financial support.