

Florentina Israel-Roming

Centre for Applied Biochemistry and Biotechnology BIOTEHNOL, Bucharest, Romania

Approaches regarding aromatic herbs

Consumption dymanic in european countries

- social changes
- food diversity
- seeking for new flavors
- o increased interest in "ethnic" cuisine

- processed foods that require spices and herbs for cooking
- tourism
- o traditional restaurants of various ethnic groups
- immigrants involved in supply chain stores and food markets
- catering system
- increased interest in a healthy lifestyle and, consequently, in the consumption of healthy food.

Media influence

Media have stimulated demand by:
a great variety of culinary programs
dedicated magazines
culinary contests
radio programs

Producers and consumers in EU

- Traditional producers: France, Italy and Greece
- The largest EU producers: Germany, Austria, Bulgaria, Spain, Poland and Hungary
- Consumers: UK, Germany, Romania, Hungary

CBI Market Survey: The Spices And Herbs Market In The Eu, march 2010, http://www.crecemype.pe/portal/images/stories/files/pdf/estudioespeciasyhierbas.pdf

Diversification of comercial products

• Comercialization:

- Individually
- Spices mix bags for specific recipes
- Sauce mix
- Food supplements
- Food products

Herbs are currently used to manufacture a very wide range of food products:

- o meat
- cheese
- o juices
- o spirits
- balsamic vinegar
- o flavored oils
- bakery products
- canned food
- confectionery, ice-cream, candy and chocolate

Climate changes

- Climate changes and their intensity depends on their action alone or simultaneously
- Major climate changes:
 - temperature regime
 - rainfalls
 - increased frequency and intensity of storms (including hurricanes)
 - dry years
 - increased UV-B, CO2 and NOx pollution

Climate changes affects: - biodiversity of fungi - host-pathogen relationship

Fungi contamination

- Aromatic hebs and medicinal plants are dried and powdered herbal blends that include different parts of the plant: leaves, stems, roots, flowers and seeds. All these parts of the plant can be degraded by bacteria and fungi.
- Some of the microbial contaminants may produce toxins
- Mycotoxigenic fungi belong maily to genera: Aspergillus sp., Penicillium sp. and Fusarium sp.

What are mycotoxins?

- MYCOTOXINS are fungal metabolites that, when ingested, inhaled, or absorbed through the skin, may cause lowered performance, sickness or death in man or animals
- They are not required for the growth of the producing fungus and, therefore, are considered secondary metabolites
- Presumably they play some role in the ecology of the fungus, but their function has not been clearly defined
- Mycotoxins are low molecular weight, nonproteinaceous compounds, with different chemical structure and with thermal stability
- They have bad effects on human and animals even when they are present in small amounts (ppm, ppb)

Who can produce mycotoxin?

MYCOTOXIN	PRODUCING FUNGI
Aflatoxins	Aspergillus flavus,
(B1, B2, G1, G2)	Aspergillus parasiticus
Aflatoxin M1	
Ochratoxin A	A. ochraceus, A. carbonarius, A. niger, Penicillium verucosum
Deoxynivalenol	Fusarium graminearum, Fusarium culmorum
Zearelenone	Fusarium graminearum, F. culmorum F. cerealis
Fumonisins	Fusarium verticillioides, Fusarium proliferatum

The presence of a toxinproducing fungus does not automatically imply the presence of the associated toxin as many factors are involved in its formation

The absence of any visible mould does not guarantee freedom from toxins as the mould may have already died out while leaving the toxin intact

Health effects of mtcotoxins

For their diversity of chemical structures and physical properties, mycotoxins exhibit a wide range of biological effects and can be:

- ✤ GENOTOXIC
- ✤ MUTAGENIC
- ✤ CARCINOGENIC
- EMBRYOTOXIC
- ✤ TERATOGENIC
- ✤ OESTROGENIC

Factors affecting the occurance of toxigenic fungi and mycotoxins

• Biological factors

susceptible crop, compatible toxigenic fungus

• Planting

 crop rotation, soil preparation, fertilization, irrigation, plantspacing, weed control

Environmental factors

• temperature, moisture, mechanical damage, insect damage

• Harvesting

crop maturity, temperature, moisture, mechanical damage

• Storage

 temperature, moisture, CO2 / O2, mechanical damage, insect damage

• Distribution and processing

temperature, moisture, spore load, microbial interactions

Fungi contamination of aromatic herbs

Aromatic herb	Identified fungi	References	
Origanum vulgare (Oregano)	Alt. alternata, Aspergillus spp., A. niger, A. versicolor, Chaetomium spp., Mucor spp., Nigrospora spp., Penicillium spp., Phoma spp., Rhizopus spp., Trichoderma spp.	Guglielminetti et al., 1996; García et al., 2001	
Mentha piperita (Peppermint)	Alternaria spp., A. flavus, A. niger, A. ochraceus, A. terreus, Fusarium spp., F. equiseti, Penicillium spp., R. nigricans, Trichoderma spp	Pepeljnjak and Cvetnić, 1998; Abou-Arab et al., 1999; Rizzo et al., 2004	
Salvia officinalis (Garden sage)	A. candidus, A. flavipes, A. fumigatus, A. glaucus, Cladosporium spp., Fusarium spp., Penicillium spp., R. nigricans	Pepeljnjak and Cvetnić, 1998; Martins et al., 2001	
Thymus vulgaris (Thyme)	R. nigricans	Pepeljnjak and Cvetnić, 1998	
Coriandrum sativum (Coriander)	A. flavus, A. glaucus, A. niger	Guglielminetti et al., 1996; Rizzo et al., 2004	

Fungi contamination of medicinal plants

Medicinal plant	Identified fungi	References
Matricaria chamomilla, Chamomilla recutita (Chamomile)	Absidia spp., A. candidus, A. flavipes, A. flavus, A. fumigatus, A. glaucus, A. niger, A. terreus, Cladosporium spp., Fusarium spp., F. compactum, Mucor spp., Paecilomyces spp., Penicillium spp., R. nigricans	Pepeljnjak and Cvetnić, 1998 ; Martins et al., 2001, Rizzo et al., 2004
<i>Tilia spp</i> . (Linden)	Alternaria spp., A. candidus, A. flavus, A. fumigatus, A. glaucus, A. niger, A. ochraceus, A. terreus, Cladosporium spp., Fusarium spp., F. equiseti, F. verticillioides, Mucor spp., Penicillium spp., R. nigricans	Pepeljnjak and Cvetnić, 1998; Abou-Arab et al., 1999 1999; Martins et al., 2001; Rizzo et al., 2004,
Urtica dioica, Urtica urens (Nettle leaves)	R. nigricans, A. niger	Pepeljnjak si Cvetnić, 1998 Stevic T. et al. 2012
Equisetum arvense (Horsetail)	R. nigricans, Fusarium spp., Penicillium spp., A. flavus, A. niger	Pepeljnjak si Cvetnić, 1998 Stevic T. et al. 2012

Santos et al., 2013 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 12 (2): 119 - 142

Mycotoxin contamination (produced by Aspergillus sp. and Penicillium sp.

Aromatic herb	AFt (µg /kg)	OTA (µg /kg)	Citrinin (µg/kg)	Referinte
Origanum vulgare (Oregano)	ND	-	-	Romagnoli et al., 2007
Mentha sp. (Spearmint)	16.6-29.7	1.1-1.4	41.0-43.3	Santos et al., 2009
Rosmarinus officinalis (Rosemary)	ND	-	-	Romagnoli et al., 2007
Salvia fructicosa	23.8-25.2	1.1-17.3	51.6-273.2	Santos et al., 2009
Salvia officinalis (Sage)	ND	ND	-	Romagnoli et al., 2007
Zingiber officinale (Ginger)	0.4-3.6 4.2-13.5	2.1-7.5	-	Arranz et al., 2006 Patel et al., 1996
Ocimum basilicum (Basil)	ND	-	-	Romagnoli et al., 2007
Coriandrum sativum (Coriander)	0.7	4.0	ND	Roy et al., 1988 Lino et al., 2006

Mycotoxin contamination (produced by Fusarium sp.)

Aromatic herb	Fumonizine (µg/kg)	ZEA (μg/kg)	Trichothecenes (µg/kg)	References
Origanum vulgare (Marjoram)	FB1 ND- <ld FB2 ND</ld 	-	-	Omurtag and Yazicioğlu, 2004
Mentha sp. (Spearmint)	<ld< th=""><th>2.1-9.3</th><th>DON 46.9-91.1 T2 3.9-4.9</th><th>Santos et al., 2009</th></ld<>	2.1-9.3	DON 46.9-91.1 T2 3.9-4.9	Santos et al., 2009
Mentha piperita (Peppermint)	FB1 160, FB2 ND	-	-	Omurtag si Yazicioğlu, 2004
Salvia officinalis (Sage)	130.0-133.3	4.7-5.2	DON 83.6-102.2, T2 0.6-2.5	Santos et al., 2009
Coriandrum sativum (Coriander)	ND	3.6-6.7	DON 21	Patel et al., 1996
Ginkgo biloba (Ginkgo leaves)	<ld< th=""><th>9.1-9.4</th><th>DON 63.4-134.1 T2 19.1-29.4</th><th>Santos et al., 2009</th></ld<>	9.1-9.4	DON 63.4-134.1 T2 19.1-29.4	Santos et al., 2009
Matricaria chamomilla Anthemis sp. (Chamomile)	<ld< th=""><th>7.3-12.5</th><th>DON 123.4-191.5 T2 3.5-8.3</th><th>Santos et al., 2009</th></ld<>	7.3-12.5	DON 123.4-191.5 T2 3.5-8.3	Santos et al., 2009

Santos et al., 2013 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 12 (2): 119 - 142

Things to take home

- Aromatic plants and medicinal plants are susceptible to toxigenic fungi contamination;
- Even the filamentous fungi can't be seen, the mycotoxin may be present;
- When intended to be used in food processing, aromatic plants need to be analyzed for toxigenic fungi contamination and for mycotoxin content.

Thank you

