

Compounds of interest in wastewater from food processing industries: H2020 Afterlife project

AFTERL!FE

Advanced Filtration TEchnologies for the Recovery and Later conversion of relevant Fractions from wastEwater

AFTERLIFE has received funding from the Bio-Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation program under grant agreement No. 745737.

AFTERL!FE

Who we are

- IDENER (a private research SME) (founded as spin-off of the University of Sevilla) and IDENER foundation
- Headquartered in Sevilla in Aeropolis, Aerospace technology park

- Team: 20 members (phD-holding and MSc-holding engineers)
- Participation in projects : 17 European y 2 national projects
- Top-5 Spanish SME in approved projects and funding

Project summary

- ➤ The AFTERLIFE project proposes a flexible, cost- and resource-efficient process for recovering and valorizing the relevant fractions from wastewater
- ➤ It will represent an advance on existing approaches to wastewater treatment, which rely on physic-chemical and biological methods
- ➤ The AFTERLIFE process will separate out the different components of value using a series of membrane filtration units that will separate all the solids in the wastewater
- These will then treated to obtain high-pure extracts and metabolites or, alternatively, to be converted into value-added biopolymers; polyhydroxyalkanoates (PHAs)
- ➤ In addition to the value extracted from the solids, the remaining outflow of the water will be ultrapure and ready for re-use

AFTERL!FE

Objectives

- Develop the filtration system for recovering suspended and soluble solids in wastewater by using membrane filtration units.
- Develop the process for recovering and purifying valuable compounds in the concentrates extracted in the filtration step.
- Develop an anaerobic/aerobic process for converting the low value-added organic matter into PHAs.
- Design and optimise the process from a holistic perspective following a Multidisciplinary Design Optimisation (MDO) approach
- Demonstration at pilot scale using real industrial wastewater to generate the end products
- Prove the economic and industrial feasibility for the process along with a comprehensive Lifecycle Analysis (LCA) and cost assessment

Expected impacts

- ➤ Validate that AFTERLIFE provides recovery rates that are comparable to, or better than, those of competing technologies
- Successfully recycle or reuse 100 percent, in dry weight, of the suspended solid fractions
- > Create a new cross-sectorial interconnection in bio-based economy clusters
- Create cooperation projects through cross-industry clusters
- Set the foundations for at least one new bio-based value chain and one new bio-based material
- ➤ Lead to 30 new consumer products by 2020
- Attract broad participation from SMEs

Expected impacts

Project Details

visit us at: www.afterlife-project.eu

EC Success story