

Fundació CTM Centre Tecnològic

Management and treatment of brines in food industry

Xavier Martínez, 14th May 2015

- Salt is used for food conservation
- Agro-food sectors requiering the highest amount of salt:
 - -Meat canning
 - -Pickled vegetables
 - -Dairy products
 - -Fish processing
- Generation of saline effluents during food processing: saline wastewater, brines, osmotic solutions
- Saline effluents polluted with suspended solids, salts and organic matter

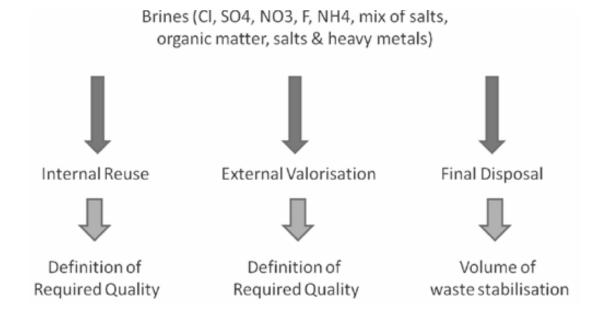
Characteristic	Green olives	Cabbage	Cucumber	Prune pickling	Maraschino cherry
pH	3.6-4.3	3.4-3.9	3.6	2.1	
NaCl (g/l)	60.0-90.0	22.0-45.0	150		
Free acidity (g lact./l)	5.0-10.0	0.4-22.0	5.4-15.0	211.0	33.0-34.0
Combined acidity (mEq/l)	0.1-0.2				
Polyphenols (g tannic acid/l)	0.2-0.4				
Colour	0.2-0.6ª	63.1 ^b			
Suspended solids (g/l)	0.2-2.0	9.4	50.0-64.0	78.6-172.5	
Total solids (g/l)	65-100	42.0-75.0	180.0	250.0-320.0	100.0-200.0
BOD ₅ (g O ₂ /l)	14.0-18.0	8.0-28.0	8.6		
COD (g O ₂ /l)	16.0-26.0	14.0-32.0	16.3		

Brines management in food industry: associated problem

- Brines represents a high proportion of the total contaminating discharge of wastewater.
- Brines can't be discharged into the main sewer system without treatment.
- Saline effluents are difficult to be treated by means of conventional biological treatments.
- Brine disposal has become an increasingly costly and environmentally challenging issue.

Administrative constrains
Union Directive 2000/60/EC: prevention of saline pollution

Process modification to minimize brine volume generated Implementation of processes for brine treatment



How to hundle industrial brines?

- Internal valorisation, meaning re-use (after treatment if needed) of the brines in the production site.
- External valorisation, meaning a fit-for-use product which can be re-used in another industrial site/sector.
- Final brine disposal. This is the least preferable pathway but it is unavoidable for some brines which are too difficult to handle or for the by-products coming from the treatments applied to produce brines which are "fit-for-use".

Key points for brine management

Nature of salt and "impurities" present with the salt (organic matter, heavy metals, other salts, suspended solids) are drivers for strategy definition and technology selection.

The most important points regarding salts valorization are:

- Produce salt product "fit-for-use" (food, textiles regeneration, chemical)
- Removal of impurities
- Internal re-use often easier than external valorisation
- Quality/purity has a big influence on price

In disposal, the focus of brine treatment maybe on volume reduction and/or complete liquid elimination.

Existing technologies for brines treatment

- Separative technologies Membranes technologies (conventional, membrane distillation, forward osmosis, electro-membranes technologies such as electrodialysis)
- Selective removal Selective precipitation/crystallisation processes, ion exchange and development of selective materials (e.g. for valuable compounds recovery)
- Treatment processes:
 - a final treatment of brines before disposal (evapoconcentration, stabilization, thermal treatment)
 - removal of some polluting compounds regarding re-use of salts (e.g. organic compounds in brines, nitrates)

ZERO LIQUID DISCHARGE (ZLD)

Process that fully remove water from brine stream, so the end product is a solid residue of precipitate salt.

Existing technologies for brines treatment

Technology	Principle	Concentration	Energy	Attention points
Reverse osmosis	Membrane filtration under high pressure	Limited due to osmotic pressure ~ 100 g/l	3-7 kWh/m³, electric	Fouling, scaling
Electrodialysis	Application ion-selective membrane influx by electrical field	Concentrate to 100 g/l	5-20 kWh/m³, electric	Fouling, scaling
EDBM	Electrodialysis with bipolar membranes	Recovery of acids and lye	5-20 kWh/m³, electric	Pre-treatment, costs of BP membrane
Evaporation	Water evaporation under the influence of temperature	Max. about 500 g/l	20 to 500 kWh/m³ heat- ing (+ 2 kWh/ m3 elect.)	Corrosion / scaling
Precipitation / Crystallization	Supersaturation, crystallization	100 %	See evaporation for crystallization	Solids processing
Lyophilization	Water removal through freezing	100 %	approx. 12 kWh/m³, electric or cold	Investments; Recovers pure water and salts

Evaporation&crystallization

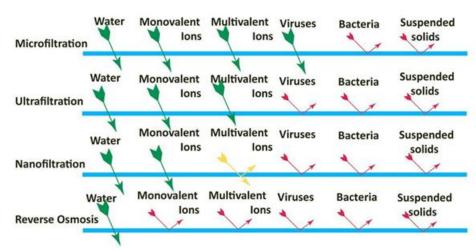
Evaporation can take place in different ways and with different types of evaporators, such as Multi-effect Distillation (MED), Vapour Compression Distillation (VCD) and Multi-Stage Flash (MSF).

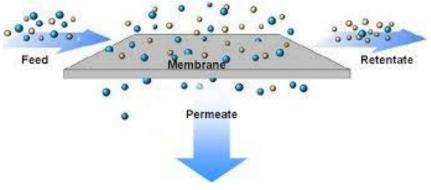
Advantages

- Can produce zero liquid discharge
- Can commercially exploit concentrate
- Recovery of salt and minerals

<u>Disvantages</u>

- Expensive
- High energy consumption
- Production of dry solid waste precipitates
- Scaling and corrosion





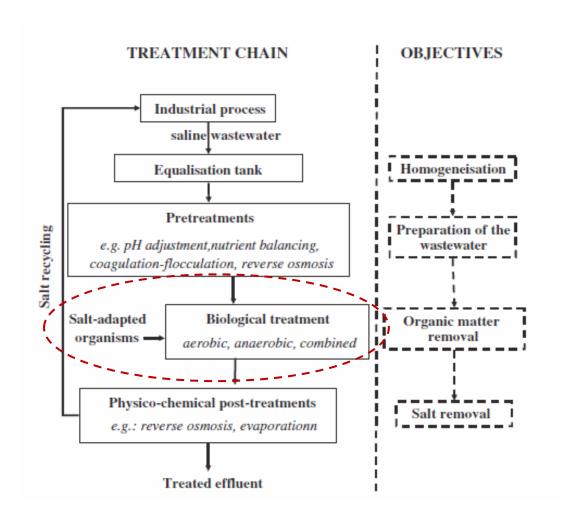
Membrane Technology

<u>Advantages</u>

- Water recovery
- Very large number of separation needs
- •Most economical process for salinity reduction associated with secondary effluent (or other wastewater source) TDS levels

Disadvantages

- High cost technology
- Pre-treatment needed for some technologies, solids removal
- Fouling problems
- Concentrate and waste stream disposal issues



Saline wastewater from food industry: global treatment chain

Biological treatment recomended before physico-chemical treatment

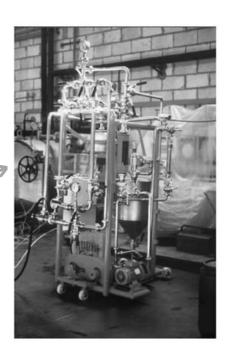
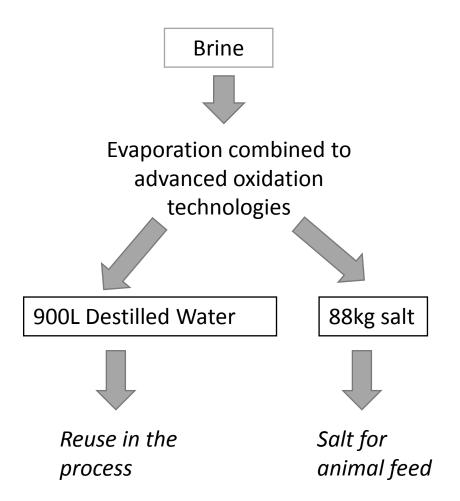


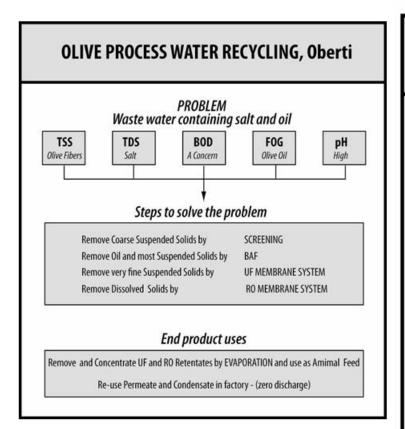
Table olive production: Fermentation brine treatment

- Brine represents 70% of the pollutant load and 20% of volume
- Elimination systems: evaporation in shallow ponds
- Other options for brine management:
 - Elimination using:
 - ✓ Evaporation with cogeneration
 - ✓ Membrane filtration
 - Reuse in the final product: fermentation brine has similar composition to final packing solution
 - √ Treatment with active carbon
 - ✓ Membrane filtration
 - Production of useful substances



La Española experiences

- ✓ Brines reuse
- ✓ Reduction of wastewater treatment cost
- ✓ Reduction of water consume



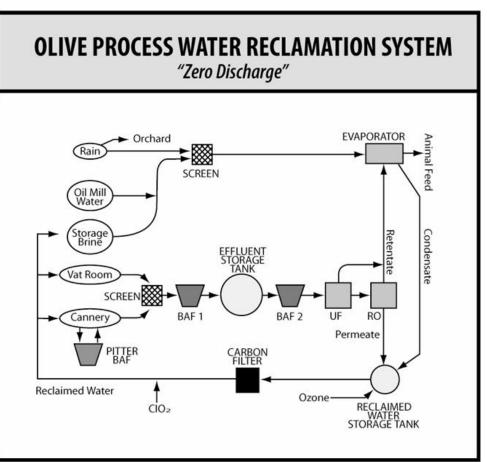


Table olive production: ZLD process for water reuse

Tri Valley Growers (TVG) Inc. (California)

Treatment of 264m³ per day

Table olive production: ZLD process for water reuse

Evaporator

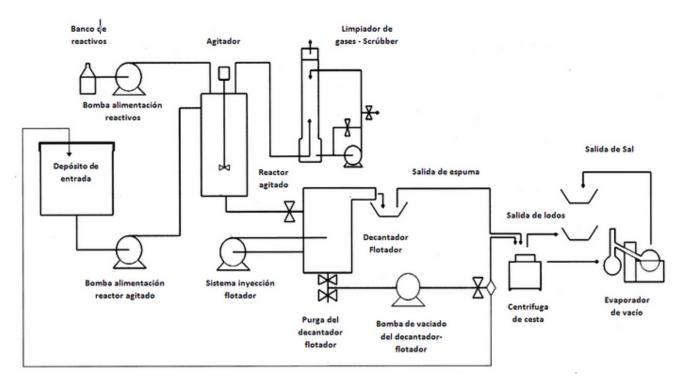
Membrane Filtration

AVERAGE WATER COMPOSITION at Oberti Olive Company				
Sample	FOG mg/L	TSS mg/L	COD mg/L	APC cfu/ml
Plant Effluent	450	900	8,000	3,000,000
After Screening	400	500	7,600	3,000,000
After BAF 1	15	20	3,800	800,000
After BAF 2	3	4	3,200	200,000
After UF	2	1	2,900	4,000
After RO	0	0	45	50

http://www.niroinc.com/

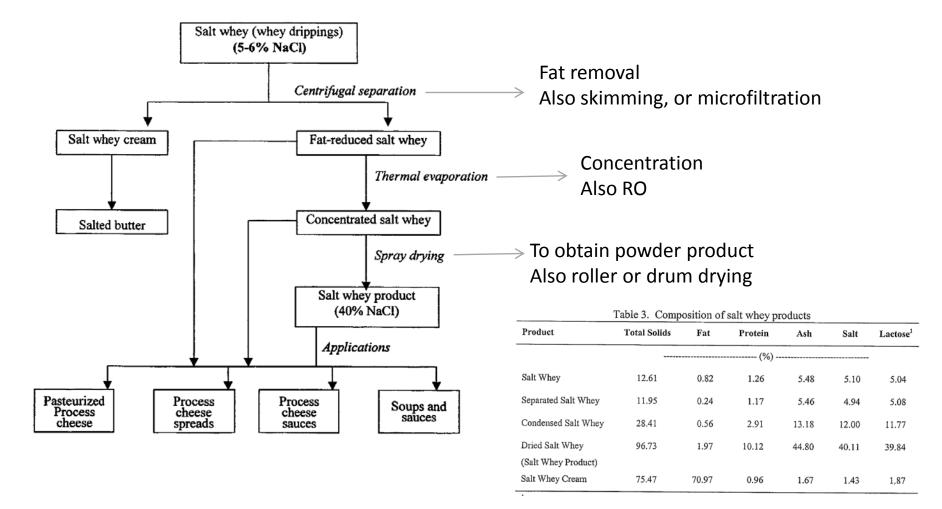
http://www.cleanwatertech.com/

http://www.gea-wiegand.com/

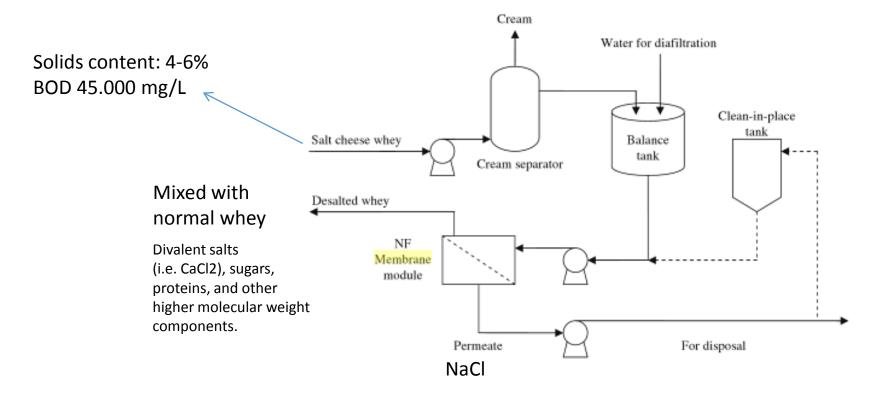


Brine treatment in meat industry

- Process evaluation at pilot scale.
- Reduction of the brine management cost (40%).
- Valorization of wastes obtained: salts and extracted proteins can be sold or used as fertilizers and food for pets.
- Distilled water obtained can be reused.

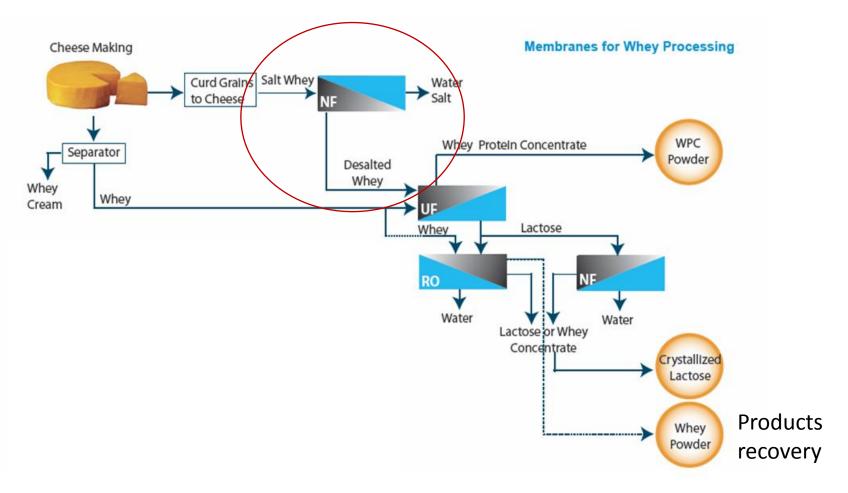


Salty Cheese Whey treatment in dairy industry

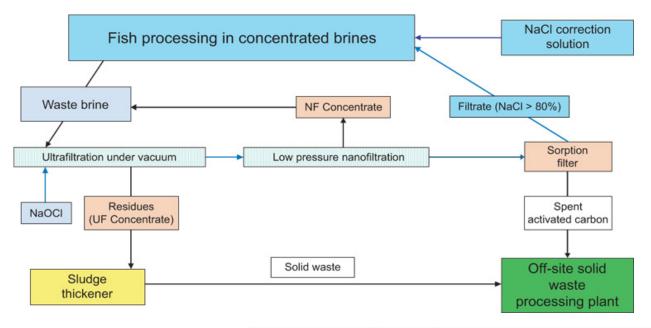

WO2004049828A1: Salt whey product and method of making Recovery and reuse of salt whey from cheesemaking as a salt substitute and whey protein source in food processing

Salty Cheese Whey treatment in dairy industry

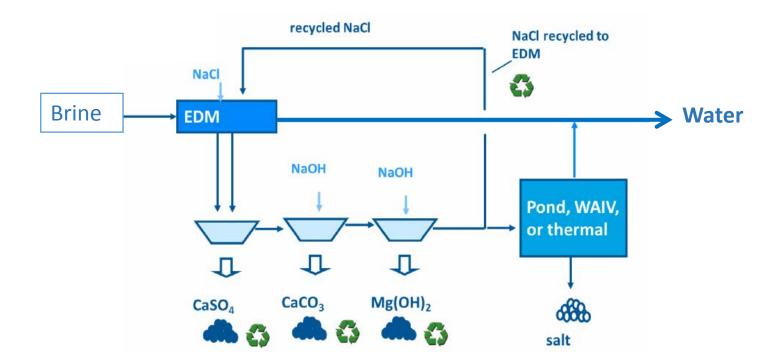
NF system retains whey proteins and lactose whilst allowing salts to pass through to the permeate stream. Whey concentration up to 25% TS, allowing for its re-use.


http://www.mmsx.com/

Salty Cheese Whey treatment in dairy industry

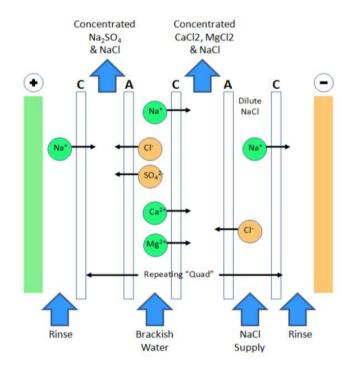


Brines treatment from fish processing



Pollutants	Units		Con	centration,	mg/l	
Pollutarits	Units	Waste brine	After UFV	After NF	After SF	Limits
рН	рН	6-8	6-8	6-8	6-8	6-8
Total nitrogen	mg/l	500	300-500	50-100	<30	<30
Oil and grease	mg/l	120-50000	10-150	0,5-5	<0,1	<45
Total phosphorus	mg/l	400	120	10	<10	<25
Sulphates, SO ₄ 2-	mg/l	200	200	<10	<10	<100
COD	mgO ₂ /l	1000-60000	420	<30	<10	250
Suspended solids	mg/l	500	0,1	-	-	-
Chlorides, Cl ⁻	g/l	120-160	120-160	100-136	100-136	120-16 <u>9</u> CNI(

New Zero Liquid Discharge technology for brine teratment: brine treatment based on a combination of electro-separation processes and valuable compound recovery.

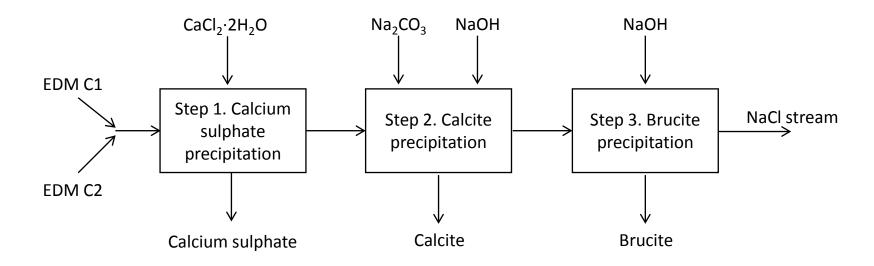


Electrodialisys Metathesis stage

Treatment capacity: 1m³/h

Feed (RO brine streams)	5 – 20 g/L TDS
Feed (NaCl feed)	20 – 30 g/L
Output (diluate) streams (adapting design is allowed)	0.02 – 3 g/L TDS
Output (concentrate) streams (adapting design is allowed)	30 – 120 g/L TDS

- Separation of the multivalent anions and cations in two different waste streams
- Highly concentrated waste streams can be obtained without precipitation



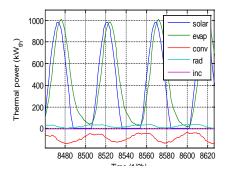
ZLD stage

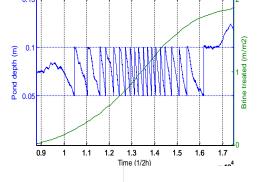
This stage must be evaluated and adapted according different brine composition

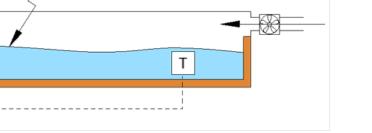
ZLD stage: treatment of NaCl stream by solar evaporation

Technology description

- Evaporative technology based on:
 - Minimal air volume contained within the greenhouse
 - Brine depth control
 - Inner temperature and humidity control
 - Thermal isolation of the pond
 - Air flow speed over the evaporation film
- Based on solar energy

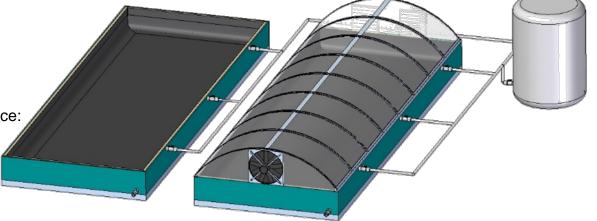

UNIT


- Electrical consumption only due to humidity removal fans
- Advanced control strategy
 - Model based control
 - Model predictive control


Seeking the optimal evaporation for every single weather condition

RH|| T

Heat transfer components and depth of the pond along one year, according to the model developed at CTM


ZLD stage: treatment of NaCl stream by solar evaporation

Pilot plant description

- Brine evaporation to obtain dry salt
- 2 ponds for comparison between **natural** evaporation and **advanced** evaporation
- Located in Almería, (bests solar irradiation of Spain)
- Brine treated near saturation (30%)

Specifications

- Advanced evaporation estimated perfomance: 2 m³/m²-year
- Natural evaporation estimated performance:
 1,2 m³/m²-year
- Pond surface: 25 m²
- Total evaporation surface: 50 m²
- Total plant capacity: 80 m³-year

Fundació CTM Centre Tecnològic

Plaça de la Ciència, 2 08243 Manresa (Barcelona) <u>www.ctm.com.es</u> +34 93 877 7373

